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The minor allele of the R620W missense single-nucleotide polymorphism (SNP) (rs2476601) in the hematopoietic-
specific protein tyrosine phosphatase gene, PTPN22, has been associated with multiple autoimmune diseases, in-
cluding rheumatoid arthritis (RA). These genetic data, combined with biochemical evidence that this SNP affects
PTPN22 function, suggest that this phosphatase is a key regulator of autoimmunity. To determine whether other
genetic variants in PTPN22 contribute to the development of RA, we sequenced the coding regions of this gene in
48 white North American patients with RA and identified 15 previously unreported SNPs, including 2 coding SNPs
in the catalytic domain. We then genotyped 37 SNPs in or near PTPN22 in 475 patients with RA and 475 individually
matched controls (sample set 1) and selected a subset of markers for replication in an additional 661 patients with
RA and 1,322 individually matched controls (sample set 2). Analyses of these results predict 10 common (frequency
11%) PTPN22 haplotypes in white North Americans. The sole haplotype found to carry the previously identified
W620 risk allele was strongly associated with disease in both sample sets, whereas another haplotype, identical at
all other SNPs but carrying the R620 allele, showed no association. R620W, however, does not fully explain the
association between PTPN22 and RA, since significant differences between cases and controls persisted in both
sample sets after the haplotype data were stratified by R620W. Additional analyses identified two SNPs on a single
common haplotype that are associated with RA independent of R620W, suggesting that R620W and at least one
additional variant in the PTPN22 gene region influence RA susceptibility.

Introduction

Autoimmune diseases (MIM 109100) afflict up to 5% of
the population and are characterized by an aberrant im-
mune response to self-antigens (Marrack et al. 2001;
Wandstrat and Wakeland 2001). The mechanisms of dis-
ease initiation and persistence are poorly understood,
but genetic factors appear to play a major role. In hu-
mans, disease-specific familial clustering has been dem-
onstrated for most common autoimmune diseases, and
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concordance is generally higher for MZ twins than for
DZ twins. Furthermore, it appears that different auto-
immune diseases share susceptibility loci. These diseases
can overlap in single individuals and in families (Lin et
al. 1998; Prahalad et al. 2002; Alkhateeb et al. 2003).
For example, parents of children with type 1 diabetes
(T1D [MIM 222100]) have increased rates of T1D and
other autoimmune diseases (Tait et al. 2004), and a re-
cent study of relatives of 1,214 patients with systemic
lupus erythematosus (SLE [MIM 152700]) showed fa-
milial aggregation of not only SLE but also RA and other
autoimmune diseases (Alarcon-Segovia et al. 2005). Ad-
ditionally, loci identified by linkage studies in different
human autoimmune diseases and in mouse models of
autoimmunity cluster together (Becker et al. 1998; Wand-
strat and Wakeland 2001).

With the exclusion of the human leukocyte antigen
(HLA) region, attempts to identify genetic variants that
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confer risk of multiple autoimmune diseases have proven
difficult, and, although some genes in the HLA region
affect risk of multiple autoimmune diseases, different al-
leles are typically risk factors for different diseases. Ueda
et al. (2003) have reported that a common variant of
CTLA4 is associated with both T1D and Graves disease
(MIM 275000), and several other reports suggest that a
variant of another member of the CTLA4 family of T-
cell regulatory receptors, PDCD1, may also predispose
individuals to several autoimmune diseases (Prokunina
et al. 2002, 2004; Nielsen et al. 2003; Lin et al. 2004).
In addition, variants in the CARD15 and SLC22A4/
SLC22A5 genes appear to play a role in both Crohn
disease (MIM 266600) and psoriatic arthritis (Hugot et
al. 2001; Rahman et al. 2003; Ho et al. 2004; Peltekova
et al. 2004), and a recent study suggests a functional
variant of FCRL3 may be associated with RA, SLE,
Graves disease, and Hashimoto thyroiditis in Japanese
(Kochi et al. 2005).

Perhaps one of the best examples of a non–major his-
tocompatibility complex (MHC) common susceptibility
allele for autoimmunity is the R620W SNP (rs2476601)
in the cytoplasmic protein tyrosine phosphatase gene,
PTPN22 (reviewed by Siminovitch [2004] and Greger-
sen [2005]). The W620 allele has been consistently as-
sociated with increased risk for T1D (Bottini et al. 2004;
Onengut-Gumuscu et al. 2004; Smyth et al. 2004; Cris-
well et al. 2005; Ladner et al. 2005; Qu et al. 2005;
Zheng and She 2005; Zhernakova et al. 2005), rheuma-
toid arthritis (RA [MIM 180300]) (Begovich et al. 2004;
Criswell et al. 2005; Hinks et al. 2005; Lee et al. 2005;
Orozco et al. 2005; Simkins et al. 2005; Steer et al.
2005; Van Oene et al. 2005; Viken et al. 2005; Zher-
nakova et al. 2005), SLE (Kyogoku et al. 2004; Cris-
well et al. 2005; Orozco et al. 2005), Graves disease
(Smyth et al. 2004; Velaga et al. 2004; Skorka et al.
2005), and juvenile idiopathic arthritis (Hinks et al.
2005; Viken et al. 2005), and there are single reports
of association with autoimmune Addison disease (Ve-
laga et al. 2004) and Hashimoto thyroiditis (Criswell
et al. 2005). However, no association has been seen with
multiple sclerosis (MS [MIM 126200]) (Begovich et al.
2005; Criswell et al. 2005; Hinks et al. 2005; Matesanz
et al. 2005), primary sclerosing cholangitis (Viken et al.
2005), Crohn disease (Van Oene et al. 2005), or pso-
riasis vulgaris (MIM 177900) (Hinks et al. 2005; M.
Cargill, unpublished data), which indicates that this
SNP is a risk allele for some but not all autoimmune
diseases.

These genetic data suggest that autoimmune diseases
associated with the W620 risk allele of PTPN22 may
share a common etiology. Although phosphatases are
known to be crucial for maintaining immune-cell ho-
meostasis, the specific function of PTPN22, otherwise
known as “Lyp” (lymphocyte phosphatase) (Cohen et al.

1999), is poorly understood. More information is avail-
able for the mouse ortholog, PEP, which serves as a nega-
tive regulator of T-cell activation via interaction with
the c-Src tyrosine kinase, Csk (Cloutier and Veillette
1996). PEP also appears to modify the phosphorylation
state of regulatory tyrosines on other Src family kinases,
such as Lck, Fyn, and ZAP-70 (Cloutier and Veillette
1999; Gjorloff-Wingren et al. 1999). Correspondingly,
knockout mice deficient in PEP show selective disregu-
lation of the effector/memory T-cell compartment with
enhanced activation of Lck, hyperproliferation, and ex-
aggerated early-signaling responses in restimulated T
cells. These mice also spontaneously develop germinal
centers and increased serum levels of certain immuno-
globulin isotypes; however, they do not display overt
signs of autoimmunity (Hasegawa et al. 2004).

The R620W SNP lies in the protein’s N-terminal SH3-
binding domain, which is necessary for interaction with
Csk (Gregorieff et al. 1998). In vitro experiments show
that the W620 variant of PTPN22 binds less efficiently
to Csk than the R620 variant does (Begovich et al. 2004;
Bottini et al. 2004), suggesting that T cells expressing
the W620 allele may be hyperresponsive; consequently,
individuals carrying this allele may be more prone to
autoimmunity.

Given the fundamental role of PTPN22 in autoim-
munity, we wished to characterize the extent of linkage
disequilibrium (LD) across this gene, define the common
PTPN22 haplotypes, and determine whether variants
other than W620 predispose individuals to the develop-
ment of RA. Accordingly, we sequenced the coding re-
gions of this gene in 48 white North Americans with
RA to identify novel SNPs, developed assays for a subset
of these SNPs as well as others from public databases,
and genotyped two large RA case-control sample sets.
The results not only support the notion that R620W is
a major RA risk site in this region but also suggest that
at least one other genetic variant in this region, inde-
pendent of R620W, predisposes individuals to RA.

Material and Methods

Samples

A detailed description of the case and control samples
is provided elsewhere (Begovich et al. 2004). In brief,
sample set 1, which consists of 475 individuals with RA
and 475 individually matched controls, was obtained by
Genomics Collaborative. All case samples were from
white North Americans who were rheumatoid factor
(RF) positive and whose condition met the 1987 Ameri-
can College of Rheumatology diagnostic criteria for RA.
Control samples were taken from a pool of healthy white
individuals with no medical history of RA. A single con-
trol was matched to each case on the basis of sex, age
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(�5 years), and ethnicity (grandparental country/region
of origin). All protocols and recruitment sites were ap-
proved by national and/or local institutional review
boards, and informed written consent was obtained from
all subjects.

Cases in sample set 2 were obtained by the North
American Rheumatoid Arthritis Consortium (NARAC)
(see NARAC Web site) and consisted of members from
661 white North American multiplex families (Jawaheer
et al. 2001, 2004). Both RF-positive and RF-negative
patients are included in this sample set. Controls were
selected from 20,000 healthy individuals who are part
of the New York Cancer Project, a population-based
prospective study of the genetic and environmental fac-
tors that cause disease (see AMDeC Web site). Two con-
trol individuals were matched to a single, randomly cho-
sen, affected sib from each NARAC family on the basis
of sex, age (decade of birth), and ethnicity (grandpar-
ental country/region of origin). Informed written consent
was obtained from every subject.

PTPN22 Sequencing

To identify novel variants in PTPN22, 48 patients from
sample set 1 who represented all three R620W genotypes
(CC, CT, and TT) were selected for resequencing. Se-
quence data from all 21 annotated exons of PTPN22,
which spans close to 58 kb, were extracted from the
R27 draft of the Celera human genome sequence (see
Celera Web site). Primers were designed using the Primer3
program and included the M13 forward (5′ primer) or
reverse (3′ primer) universal sequencing primer-binding
sequence at their 5′ ends. (Primer sequences are available
on request.) Standard PCR reactions were performed in
a 96-well format by use of the Applied Biosystems 9700
thermocycler (denaturation at 96� for 5 min, followed
by 40 amplification cycles at 94� for 30 s, 60� for 45 s,
and 70� for 45 s, and then an extension at 72� for 10
min). Unincorporated dNTPs and primers were removed
with shrimp alkaline phosphatase/exonuclease, and the
product was used as the template in a 7-ml Big Dye
Terminator (Applied Biosystems) sequencing reaction on
the AB9700 (denaturation at 96� for 2 min, followed by
35 amplification cycles at 96� for 10 s, 50� for 30 s, and
60� for 1 min). Samples were precipitated using the
EtOH/NaOAc protocol recommended by Applied Bio-
systems, were resuspended in deionized distilled water,
and were loaded on the Applied Biosystems Prism 3730
DNA Sequencer. Sequence traces were assembled and
analyzed using a modified version of the PolyPhred soft-
ware package. Skilled sequence annotators reviewed all
predicted variants.

SNP Selection

In addition to R620W, assays for 36 SNPs in and
around PTPN22 were successfully built and genotyped
in sample set 1. To minimize the amount of genotyping
yet retain as much statistical power as possible to detect
disease-associated SNPs, we applied the program Redigo
(Hu et al. 2004), which identified seven tagging SNPs
for replication (SNPs 1, 18, 20, 22, 27, 35, and 36 in
table 1). We included three additional SNPs (SNPs 2,
32, and 37) on the basis of functional categorization
(putative transcription factor binding sites [TFBSs] and
UTR) and one SNP (SNP 21) with the most significant
allelic disease-association P value in sample set 1. Three
other SNPs with a minor-allele frequency !5% (SNPs
23, 28, and 34), which were not in the Redigo selected
set, were included to increase the power of detecting
association for rare SNPs. In all, 14 SNPs, including the
R620W SNP, were genotyped in sample set 2 (see table
1 for a complete list of SNPs). Elsewhere, we have re-
ported the results for R620W in sample set 1 and the
first 463 families and 926 controls of sample set 2 (Be-
govich et al. 2004).

Genotyping Methods

Genotypes were generated by kinetic, allele-specific
PCR (Germer et al. 2000). In brief, 0.3 ng of DNA was
amplified in a 15-ml reaction containing allele-specific
primers. (Primer sequences are available on request.) Ge-
notyping calls were made automatically using custom
software and were subsequently hand-curated before
statistical analysis. Genotyping accuracy has been esti-
mated to be 199.8% by comparison with an independent
method.

LD Analysis

To better understand the genetic structure of this re-
gion, we calculated the LD measures D′ and r2 between
every marker pair in each sample set, using the LDMAX
program in the GOLD package (Abecasis and Cookson
2000) (the nonsense SNP, SNP 9, which was found on
only one chromosome, was excluded). We then employed
Spotfire software to generate a graphical representation
of the r2 LD matrix for the sample set 1 control data.

Haplotype Estimation

The Haplo.stats package was used to predict haplo-
types and to directly estimate their frequencies for the
14-marker data in both sample sets as well as to test for
haplotype association with RA via a permutation proce-
dure (Schaid et al. 2002). Because of the computational
limitations of the haplotype-estimation algorithm within
Haplo.stats when looking at large numbers of markers,
SNPHAP was used to predict haplotypes for the 36-
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Table 1

PTPN22 SNP Allele Frequencies and Allele-Based Association with RA

SNPa dbSNP ID TYPEb POSITIONc

SAMPLE SET 1d SAMPLE SET 2d

Frequency in

OR 95% CI P

Frequency in

OR 95% CI P
Cases

( )n p 475
Controls
( )n p 475

Cases
( )n p 661

Controls
( )n p 1,322

1 rs1217414 Intron T10498782C .261 .269 .96 .78–1.18 .71 .241 .275 .84 .72–.98 .02
2 rs2488458 TFBS A10492566G .270 .224 1.28 1.04–1.58 .024 .292 .245 1.27 1.10–1.48 .0016
3 rs2476604 Intron A10492559T .485 .388 1.48 1.24–1.78 2.7E�05 … … … … …
4 rs1775754 Intron G10491016A .273 .224 1.30 1.06–1.61 .014 … … … … …
5 rs1217421 Intron C10488960G .274 .225 1.30 1.05–1.60 .016 … … … … …
6 rs1217420 Intron T10488865C .484 .387 1.48 1.24–1.78 2.7E�05 … … … … …
7 rs1217417 Intron C10487019G .245 .248 .99 .80–1.21 .91 … … … … …
8 rs3789609 Intron A10483914G .260 .351 .65 .53–.79 2.4E�05 … … … … …
9 ss38346947 R183X T10483780C .001 .000 NC … 1.00 … … … … …
10 ss38346946 Intron A10483096T .006 .005 1.21 .37–3.94 .77 … … … … …
11 rs2476602 Intron T10483070C .251 .258 .96 .78–1.18 .75 … … … … …
12 rs1217410 Intron G10482931A .274 .223 1.31 1.06–1.62 .014 … … … … …
13 rs1217408 Intron G10482395A .256 .261 .97 .79–1.19 .83 … … … … …
14 ss38346945 R263Q A10480804G .024 .017 1.39 .73–2.66 .33 … … … … …
15 rs3765598 Intron A10480578G .205 .156 1.40 1.11–1.77 .0056 … … … … …
16 rs1217407 Intron T10479863C .273 .225 1.29 1.05–1.59 .019 … … … … …
17 rs1217406 Intron T10479268G .483 .388 1.47 1.22–1.76 4.6E�05 … … … … …
18 rs12760457 Intron A10475862G .262 .354 .65 .53–.79 2.0E�05 .258 .297 .82 .71–.96 .01
19 rs974404 Intron C10468140A .488 .390 1.49 1.24–1.79 2.4E�05 … … … … …
20 rs11102685 Intron G10467748A .084 .085 .98 .71–1.35 .93 .099 .079 1.27 1.01–1.60 .04
21 rs12730735 Intron G10467572A .261 .353 .65 .53–.79 2.0E�05 .258 .300 .81 .70–.94 .0064
22 rs2476601 R620W T10463683C .138 .089 1.65 1.23–2.20 6.6E�04 .153 .085 1.93 1.58–2.37 3.2E�10
23 ss38346944 Intron T10463342G .041 .032 1.29 .79–2.09 .33 .031 .024 1.29 .87–1.93 .21
24 rs1970559 Intron G10463263A .253 .260 .97 .79–1.19 .79 … … … … …
25 rs2797415 Intron T10463208C .273 .224 1.30 1.06–1.61 .014 … … … … …
26 rs1217395 Intron G10460550A .272 .224 1.29 1.05–1.59 .018 … … … … …
27 rs1310182 TFBS T10459618C .482 .386 1.48 1.23–1.77 3.2E�05 .502 .428 1.35 1.18–1.54 1.0E�05
28 ss38346943 Intron C10458639T .026 .017 1.52 .81–2.87 .21 .018 .028 .63 .40–1.01 .05
29 rs2476600 Intron T10455849C .483 .385 1.49 1.24–1.79 2.5E�05 … … … … …
30 rs2797416 Intron A10455374G .484 .387 1.49 1.24–1.79 2.2E�05 … … … … …
31 rs1217389 Intron G10451867A .274 .225 1.30 1.05–1.60 .016 … … … … …
32 rs1217388 TFBS C10450591T .274 .222 1.32 1.07–1.63 .010 .294 .246 1.28 1.11–1.49 .0011
33 rs2476599 Intron T10449574C .255 .262 .96 .78–1.18 .75 … … … … …
34 ss38346942 Intron A10448233T .010 .013 .75 .32–1.78 .66 .014 .016 1.03 .59–1.79 1
35 rs1217413 Intron C10443865T .245 .189 1.39 1.12–1.73 .0035 .269 .212 1.37 1.18–1.60 6.2E�05
36 rs3811021 UTR3 C10442778T .207 .160 1.37 1.08–1.73 .010 .205 .183 1.15 .97–1.36 .10
37 rs3789604 TFBS C10441057A .210 .160 1.39 1.10–1.76 .0071 .206 .185 1.15 .97–1.35 .11

a Alleles are listed in order from the 5′ end of the gene to the 3′ end.
b All TFBSs are putative and have not been experimentally confirmed.
c Positions are according to genomic contig NT_019273. The minor allele is listed first, followed by the position and then the major allele. The alleles are oriented

according to transcript NM_012411, which is the reverse complement of the genomic contig sequence.
d ORs and 95% CIs are estimated for the minor allele of each SNP. P values for allelic association with disease were calculated using Fisher’s exact test. NC p

not calculated.

marker data (SNP 9, the rare nonsense SNP, was ex-
cluded). To ensure that these two algorithms yielded simi-
lar results, we also used SNPHAP to analyze the
14-marker data from both sample sets and compared
the results with those generated by Haplo.stats; the re-
sults from the two algorithms were similar.

Haplotype-Method Analysis

To determine whether other PTPN22 variants predis-
pose individuals to RA independent of R620W, the hap-
lotype method was applied to the 14-marker data in both
sample sets (Thomson et al. 1988, Valdes and Thomson
1997). Haplotype frequencies were directly estimated us-

ing an expectation-maximization algorithm implemented
in SNPHAP. To determine whether R620W by itself
could explain all the association with RA in this region,
we removed all chromosomes carrying the risk T allele
(W620), which uniquely defines haplotype 2, from the
data and then examined the remaining 13 SNPs on hap-
lotypes carrying the C allele (620R) for disease associa-
tion, using a permutation procedure to assess signifi-
cance (Li 2001). We also conducted haplotype-method
pairwise analyses between R620W and every other SNP
to identify those SNPs that showed evidence of 620W-
independent association with disease. To address whether
SNP 27 is a risk factor independent of R620W and SNP
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Table 2

SNPs Identified through Resequencing in 48 Patients
with RA

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

37, we removed all chromosomes carrying either W620
or the SNP 37 risk allele (C) and examined the remaining
chromosomes for association of SNP 27 with RA.

CLR Analysis

To independently confirm the haplotype-method analy-
sis results, and at the same time to address possible in-
accuracies or bias that could have arisen from the esti-
mation of haplotype frequencies in the haplotype method,
we used conditional logistic regression (CLR) on the un-
phased 14-marker genotype data, to examine the geno-
typic associations of the individual PTPN22 markers in
each of the study sample sets after adjusting for the
previously identified R620W risk marker (with or with-
out the other known genetic risk factor, HLA-DRB1)
and accounting for the matching between cases and con-
trols (Breslow and Day 1980). HLA genotypes were
binned as described elsewhere (Begovich et al. 2004).
Tests for trend in increasing odds ratios (ORs) were per-
formed under the assumption of an additive model by
entering the number of risk alleles into the regression
model.

RPE and Haplotype Regression Analyses

To assess whether haplotypes 2 and 4 were sufficient
to explain the association with PTPN22, we first em-
ployed a test similar to the relative predispositional ef-
fects (RPE) method (Payami et al. 1989) in which haplo-
types 2 and 4 were removed from the 14-marker hap-
lotype data and a x2 test of heterogeneity was conducted
for the remaining haplotypes. To assess the relative ef-
fects of the individual haplotypes on RA status, we used
the haplotype regression method (Lake et al. 2003) from
the Haplo.stats package to model the disease status as
a function of the common haplotypes with or without
the other known genetic risk factor, HLA-DRB1. We
modeled the haplotype effects under an additive model
and only included haplotypes with frequencies 11% in
the regression analysis.

Diplotype Analysis

To better understand the disease-predisposing effects
at selected SNPs, diplotypes were estimated from the
unphased genotype data by use of a pseudo–Gibbs Sam-
pler algorithm (Stephens et al. 2001) implemented by
SNPAnalyzer (Yoo et al. 2005). The diplotype estimation
procedure was performed separately on cases and con-
trols for individuals with complete genotype data at both
sites, and the most likely pair of haplotypes for each
individual was selected by the program. CLR was used
to assess the association of the inferred diplotypes with
RA risk, relative to the most common diplotype.

Results

PTPN22 Sequencing in Patients with RA

We sequenced 960 bases of 5′ sequence, all exons and
intron/exon boundaries, and 1,460 bases of 3′ sequence
of PTPN22 in 48 RF-positive individuals from sample
set 1. On average, we successfully sequenced 37 indi-
viduals for each amplicon (coverage ranged from 21 to
48 individuals) and identified 32 SNPs, 15 of which were
not found in public databases (table 2). Of these 15, 2
were coding region SNPs (cSNPs): one cSNP was a mis-
sense SNP in a nonconserved residue of the catalytic
domain (R263Q), and the other was a nonsense SNP
(R183X) also in the catalytic domain (fig. 1A). Minor
alleles of both cSNPs were observed on only one chro-
mosome in these 48 individuals.

PTPN22 SNP Genotyping and Single-Marker
Association

We genotyped 37 SNPs in the region of the PTPN22
gene (fig. 1A) in sample set 1 (475 independent cases
and 475 individually matched controls). As we reported
elsewhere for this sample set (Begovich et al. 2004), the
W620 allele (SNP 22 [rs2476601]) was significantly en-
riched in cases compared with controls (allele frequen-
cy was 13.8% in cases and 8.9% in controls) (P p

; allelic ); however, alleles at many�46.6 # 10 OR p 1.65
of the other 36 markers also showed significant associa-
tion with RA (table 1). The minor allele of the novel
missense SNP (R263Q) was present at a frequency of
2.4% in cases compared with 1.7% in controls and was
not significantly associated with disease ( ). TheP p .33
minor allele of the nonsense SNP (R183X) appeared on
only one chromosome in this sample (in the case patient
in whom it was originally identified) and was excluded
from all subsequent analyses. Interestingly, this sample
was from a woman with RA onset at age 64 who was
negative for the HLA-DRB1 shared epitope and who
carried two copies of the R620 PTPN22 allele.

Given that the genotypes at many of these 37 SNPs
are correlated due to strong LD across this gene (see
below), we sought to minimize the amount of genotyp-
ing in sample set 2 (661 independent cases and 1,322
individually matched controls) by selecting 14 markers
for replication (see the “Material and Methods” section
for the selection procedure). Of the 14 markers tested,
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Figure 1 Gene structure and LD of PTPN22. A, Location and functional domain types of the 37 SNPs genotyped in sample set 1. Missense
variants are colored in red; the nonsense variant is colored in red and marked by an asterisk (*); putative TFBSs are colored in blue; and sites
within the 5′ and 3′ UTRs are colored in green. B, Pairwise LD between 36 SNPs (excluding the rare nonsense SNP 9), as measured by r2 in
475 controls from sample set 1. The indexes of the SNPs (table 1) were arranged vertically from SNP 2 to SNP 37 and horizontally from SNP
1 to SNP 36.

7 showed significant association with RA in both sample
sets (SNPs 2, 18, 21, 22 [R620W], 27, 32, and 35), but
R620W was the most significant SNP in sample set 2
( ; ) (table 1). For five SNPs�10P p 3.2 # 10 OR p 1.93
(SNPs 2, 22 [R620W], 27, 32, and 35), the minor-allele
frequency was increased in the cases, whereas, for SNPs
18 and 21, the major-allele frequency was increased in
the cases.

LD and Haplotype Association

To assess the extent of LD across PTPN22, we cal-
culated D′ and r2 values for all SNP pairs, using the 36-
marker data from the sample set 1 controls (SNP 9, the
rare nonsense SNP, was excluded). The pairwise D′ val-
ues in the PTPN22 gene were near 1 among almost all
SNP pairs in our white North American samples (data
not shown), and a number of these 36 markers were
highly correlated with each other (r2 values 10.90) (see
fig. 1B). It is interesting to note that the R620W SNP
was not completely correlated with any other SNP ge-

notyped in this study (all r2 values were !0.5). Similar
results were seen for the cases from sample set 1 as well
as both the cases and controls from sample set 2 (14-
marker data) (data not shown).

Ten common (frequency �1%) haplotypes were pre-
dicted for sample set 1 by use of data from both the 14-
and 36-marker sets; the same 10 haplotypes were ob-
served in sample set 2 (table 3). Of the 10 haplotypes,
6 were at a frequency of 5% or more in the controls.
The most common haplotype, haplotype 5, was present
at a frequency of ∼35% in sample set 1 controls and
∼30% in sample set 2 controls. The W620 risk allele
was found on a single haplotype, haplotype 2, which
differs from haplotype 1 at only this SNP.

Next, we assessed the association of these predicted
haplotypes with RA by using the frequency data gen-
erated for the 14 SNPs (table 3). The overall association
between the haplotypes and disease status is highly sig-
nificant in both sample sets (sample set 1, global P p

; sample set 2, global ). As expected�5.0001 P ! 5 # 10
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Table 4

Association of PTPN22 SNPs
with RA after Conditioning
on R620W: The Haplotype Method

SNP

P VALUEa FOR

Sample Set 1 Sample Set 2

1 1 .29
2 1 1.00
18 .0012 .21
20 1 .01
21 .0006 .20
23 .22 .24
27 .001 .03
28 .15 .004
32 1 1.00
34 1 1.00
35 1 1.00
36 .0009 .01
37 .0003 .01

a P values were calculated using a
permutation procedure (Li 2001) for
the haplotype method (Thomson et al.
1988; Valdes and Thomson 1997).

from the single-marker data, haplotype 2 (which carries
the W620 allele) was significantly increased among cases
compared with controls, in both samples (sample set 1,

; sample set 2, ). Haplotype 1,�5P p .001 P ! 5 # 10
which differs from haplotype 2 only at R620W, showed
no association with disease in either sample set (sample
set 1, ; sample set 2, ). Haplotype 4,P p .59 P p .32
which is uniquely marked by the minor alleles of SNPs
15, 36, and 37, appeared to be increased among cases
in both sample sets, although the statistical significance
in sample set 2 was marginal ( ). On the otherP p .07
hand, haplotype 5, uniquely marked by the minor alleles
of SNPs 8, 18, and 21, was significantly decreased
among cases in both sample sets (sample set 1, P p

; sample set 2, ). Haplotype 6 was also�55 # 10 P p .01
decreased among cases, compared with controls, in both
sample sets, but this association was only significant in
sample set 2 ( ).�5P ! 5 # 10

The differences in haplotype frequencies between the
two sample sets, combined with the lack of replication
of some of the haplotype associations, led us to examine
first how consistent case haplotype frequencies were be-
tween the two studies and then how consistent control
haplotype frequencies were. A x2 test showed no signifi-
cant differences between cases ( ) but did revealP p .51
a significant difference between controls in the two stud-
ies ( ), which appears to be largely driven byP p .015
differences in the frequencies of haplotypes 1, 4, and 5.

Does R620W Explain All the Association Seen
with PTPN22?

The known association of the W620 allele with RA,
in addition to the strong LD across PTPN22 (fig. 1B),
may confound our ability to determine which, if any, of
the other SNPs in this region are independently associ-
ated with susceptibility to RA. Therefore, we used the
haplotype method to assess whether the observed as-
sociation of other PTPN22 markers (table 1) could be
explained entirely by LD with R620W. Using the 14-
marker data, we applied the haplotype method to both
sample sets. Statistical significance, assessed using a per-
mutation procedure, allowed us to reject the null hy-
pothesis that R620W by itself accounts for all the pre-
disposing effects in this region in both data sets (sample
set 1, ; sample set 2, ).P p .002 P p .0086

Association of Other PTPN22 SNPs after Adjustment
for R620W: The Haplotype Method

Having established that R620W by itself does not ac-
count for all the association observed between RA and
PTPN22 in both sample sets, we used the haplotype
method to identify which SNPs, independent of R620W,
were associated with RA. Analysis of the 14-marker data
in both samples sets identified three SNPs (SNPs 27, 36,

and 37) that were consistently associated with RA (table
4) independent of R620W. These three SNPs represent,
at most, two independent associations, since SNPs 36
and 37 are in nearly complete LD ( in sample2r p 0.993
set 1 cases and 0.984 in sample set 1 controls), and the
minor allele of each is found on a single haplotype, hap-
lotype 4 (table 3); consequently, all subsequent analyses
used only one of these two SNPs, SNP 37.

Association of PTPN22 SNPs after Adjustment
for R620W: CLR

To further investigate the association of SNPs 27 and
37 with risk of RA independent of R620W, we ana-
lyzed the genotype data by using CLR. ORs and 95%
CIs for each genotype, relative to the major-allele homo-
zygote genotype after adjustment for the R620W SNP,
are shown in table 5 along with a trend test to assess
overall significance. SNP 37 showed significant associ-
ation with RA after adjustment for R620W in both data
sets (sample set 1, ; sample set 2,P p .002 P ptrend trend

). Evidence of R620W-adjusted RA association for.014
SNP 27 was significant in sample set 1 ( )P p .002trend

but was marginally significant in sample set 2 (P ptrend

). Further adjustment for HLA-DRB1 genotype, the.052
strongest known genetic risk factor for RA (Seldin et al.
1999; Newton et al. 2004), had little impact on the risk
estimates for these two SNPs (data not shown). The
substantial risk estimated for heterozygotes suggests that
a recessive mode of inheritance is an unlikely explana-
tion for these data.

We also examined the association of R620W with RA
after adjusting for these new risk alleles by using CLR
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Table 5

CLR Analysis, Adjusted for R620W Genotypes

MODEL,
SNP TESTED,
AND GENOTYPE

SAMPLE SET 1 SAMPLE SET 2

ORa 95% CI Ptrend ORa 95% CI Ptrend

SNP 27 and R620W:
SNP 27:

TT 1.85 1.23–2.77 .0022 1.32 .98–1.77 .0523
TC 1.42 1.04–1.93 … 1.22 .97–1.54 …
CC 1.00 … … 1.00 … …

R620W:
TT 1.63 .39–6.76 .0823 2.17 1.02–4.61 !.0001
TC 1.34 .95–1.88 … 1.89 1.47–2.43 …
CC 1.00 … … 1.00 … …

SNP 37 and R620W:
SNP 37:

CC 1.73 .78–3.82 .0022 1.78 1.13–2.79 .0143
CA 1.55 1.16–2.06 … 1.15 .93–1.42 …
AA 1.00 … … 1.00 … …

R620W:
TT 2.53 .62–10.26 .0004 2.90 1.37–6.18 !.0001
TC 1.77 1.27–2.46 … 2.19 1.73–2.78 …
CC 1.00 … … 1.00 … …

NOTE.—Case-control status was modeled within a CLR framework with both
R620W and the second SNP (either SNP 27 or 37) genotypes coded as indicator
variables and included in the model.

a ORs were calculated relative to the major-allele homozygote, mutually adjusted
for the other marker in the model.

(table 5). Adjustment of R620W by SNP 37 did not
markedly alter the R620W OR estimates, which re-
mained significant in both sample sets ( ). Ad-P ! .001trend

justment for SNP 27 did not have an appreciable effect
on the R620W association in sample set 2 (P !trend

), but R620W was no longer significantly associ-.0001
ated with RA risk in sample set 1 ( ).P p .08trend

When SNPs 27, 37, and R620W were jointly modeled
using CLR, no independent effects were obtained in sam-
ple set 1, and only R620W remained significant in sam-
ple set 2 (data not shown). These results indicate an
inability of CLR to resolve evidence for independent
effects from SNPs 27 and 37 in the presence of R620W,
reflecting the existence of LD among these markers.

Are SNPs 27 and 37 Independent Risk Factors?

The above results suggest that SNPs 27 and 37 are
potential disease-predisposing sites independent of
R620W. Whereas the SNP 37 risk allele is found on a
single common haplotype, haplotype 4, the risk allele of
SNP 27 is present on 4 of the 10 common haplotypes
(haplotypes 1–4) (table 3), 2 of which (haplotypes 2 and
4) are associated with RA. It is therefore possible that
the R620W-independent association observed between
SNP 27 and RA is the result of an effect from haplotype
4, which is defined by the SNP 37 risk allele. To test this
hypothesis, we again used the haplotype method, and,
this time, from the estimation of haplotype frequencies

and their analysis via the haplotype method, we were
unable to reject the null hypothesis that just two SNPs,
R620W and SNP 37, explain the association observed
for all three markers (620W, SNP 37, and SNP 27)
( in sample sets 1 and 2). These results suggestP p 1
that SNP 27 and SNP 37 are not mutually independent
risk factors and that just W620 and the SNP 37 risk
allele together can explain the association observed be-
tween these three SNPs and RA.

Do R620W and SNP 37 Explain All the Significant
Association between PTPN22 and RA?

To assess whether these two SNPs could explain all
the observed association between PTPN22 and RA, we
conducted a test of heterogeneity between case and con-
trol haplotypes after removing the two haplotypes (hap-
lotypes 2 and 4) uniquely marked by the risk alleles at
R620W and SNP 37. This analysis is similar to the RPE
method of Payami et al. (1989). The test of heteroge-
neity for the remaining eight haplotypes was significant
in sample set 2 ( ; ) and was2 �4x p 25.28 P p 6.77 # 10
marginally significant in sample set 1( ;2x p 13.19 P p

); however, none of the remaining haplotypes that.07
demonstrated significant differences between cases and
controls in sample set 2—haplotypes 6 ( ) andP p .001
8 ( )—was significant in sample set 1 (haplotypeP p .002
6, ; haplotype 8, ). These results suggestP p .64 P p .52
that haplotypes 2 and 4 capture the major effects of
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Table 6

Diplotype Analysis for R620W and SNP 37

DIPLOTYPE HAPLOTYPESa

SAMPLE SET 1 SAMPLE SET 2

No. of
Cases

No. of
Controls ORb 95% CI Pc

No. of
Cases

No. of
Controls ORb 95% CI Pc

T-A/T-A H2/H2 6 3 2.54 .62–10.32 .1934 13 14 2.54 1.16–5.54 .0196
T-A/C-C H2/H4 32 14 2.67 1.36–5.23 .0043 41 43 2.4 1.52–3.79 .0002
C-C/C-C H4/H4 15 11 1.73 .78–3.84 .1757 36 52 1.75 1.12–2.74 .0148
T-A/C-A */H2 86 64 1.78 1.22–2.61 .0027 135 153 2.26 1.72–2.98 !.0001
C-A/C-C */H4 133 113 1.56 1.14–2.14 .0059 158 336 1.19 .94–1.51 .1529
C-A/C-A */* 194 261 … … … 275 706 … … …

NOTE.—Case-control status was modeled within a CLR framework with the common diplotypes (frequency 11%) for two loci (R620W
and SNP 37) coded as indicator variables and included in the model.

a Corresponding haplotypes for each diplotype. H2 p haplotype 2; H4 p haplotype 4 (see table 3). An asterisk (*) indicates all other
haplotypes (1, 3, and 5–10).

b ORs were calculated relative to the most common diplotype, C-A/C-A.
c The Wald test P value was calculated for each diplotype coefficient.

association between PTPN22 and RA in sample set 1
but not in sample set 2.

To explore the relative effects of each haplotype, we
performed a haplotype regression analysis in which the
most common haplotype, haplotype 5, was set as the
reference group. The results show that haplotype 2 (sam-
ple set 1, , ; sample set 2,�6P p 7.7 # 10 OR p 2.17

, ) and haplotype 4 (sample�10P p 3.9 # 10 OR p 2.11
set 1, , ; sample set 2,�5P p 2.5 # 10 OR p 1.86 P p

, ) are the most significant and also the.02 OR p 1.26
two major haplotypes that conferred significantly in-
creased risk in both sample sets, relative to haplotype 5.
Further adjustment for HLA status had little impact on
the risk estimates for haplotype 2 (sample set 1, P p

, ; sample set 2, ,�4 �65.2 # 10 OR p 1.93 P p 1.2 # 10
) and haplotype 4 (sample set 1, #OR p 1.94 P p 5.9

, ; sample set 2, ,�4 �310 OR p 1.74 P p 3.7 # 10
). These results provide support for the no-OR p 1.40

tion that haplotypes 2 and 4 are the only RA-risk hap-
lotypes that are significantly associated with RA relative
to the most common haplotype (haplotype 5) in both
sample sets.

The Combined Effects of R620W and SNP 37 in RA:
Diplotype Analysis

To further assess the combined effects of R620W and
SNP 37 and their potential predisposition to RA risk,
we conducted a diplotype analysis. First, we estimated
phase for the alleles at the two sites for each individual,
using a Bayesian method (Stephens et al. 2001) imple-
mented in SNPAnalyzer (table 6). Consistent with the
observation that the D′ value between R620W and SNP
37 is close to 1, only three of the four possible haplotypes
were observed; chromosomes with a risk allele at both
sites were not seen.

Next, CLR was used to assess association of the in-
ferred diplotypes with RA risk by use of the most com-

mon diplotype (C-A/C-A: R620W–SNP 37/R620W–SNP
37), corresponding to the major homozygous (nonrisk)
genotypes at both sites, as the reference group (table 6).
When R620W heterozygous genotypes (CT) were sub-
divided by the presence or absence of the SNP 37 risk
allele on the other chromosome, we found, in both sam-
ple sets, that the diplotype positive for the SNP 37 risk
allele (T-A/C-C) had a higher OR point estimate than
that of the diplotype without the SNP 37 risk allele (T-
A/C-A) (2.67 vs. 1.78 in sample set 1; 2.40 vs. 2.26 in
sample set 2). Diplotypes carrying two copies of the SNP
37 risk allele and no copies of W620 (C-C/C-C) also
appear to have increased risk ( and 1.75 inOR p 1.73
sample sets 1 and 2, respectively) relative to the most
common diplotype; however, this observation was sig-
nificant only in sample set 2 (sample set 1, ;P p .1757
sample set 2, ). Diplotypes carrying a singleP p .0148
copy of the SNP 37 risk allele and no copies of W620
(C-A/C-C) are at increased risk for RA in sample set 1
( ; ); however, this was not con-P p .0059 OR p 1.56
firmed in sample set 2 ( ; ). WeP p .1529 OR p 1.19
observed similar results after further adjustment for
HLA-DRB1 genotypes.

Discussion

Given the genetic and other biological data implicating
the minor allele of the PTPN22 R620W SNP as a risk
factor for RA and other autoimmune diseases, we wanted
to determine whether additional PTPN22 variants were
associated with RA, independent of R620W. Accord-
ingly, we sequenced all exons and intron/exon bound-
aries of PTPN22 as well as 5′ and 3′ sequences in 48
RF-positive patients with RA and identified 15 previ-
ously unreported SNPs, including two cSNPs in the cat-
alytic domain. Using this information and that in public
databases, we generated assays for 36 SNPs in or near
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PTPN22, in addition to R620W, and genotyped them
in an RA sample set.

Neither of the two new cSNPs showed significant
association with disease in this sample set. The minor
allele of R263Q was present on ∼2% of both case and
control chromosomes, and, although arginine (R263) is
the major allele in humans, glutamine (Q263) appears
to be the ancestral allele. Q263 is found in chimpanzees,
dogs, rodents, and chickens. The predicted stop codon
(X183) lies in the middle of the catalytic domain and
likely leads to loss of function; however, it was seen
only once in our study, in an individual with RA (ex-
istence of this allele was independently confirmed by
both sequencing and genotyping). Although this non-
sense SNP was not genotyped in our second sample set,
we did screen 1,104 individuals from a Dutch early-
arthritis cohort (van Aken et al. 2003) and failed to
detect it (authors’ unpublished results), which suggests
that this nonsense SNP is very rare in whites.

Many of the other 34 markers spanning this 58-kb
region were strongly associated with RA in this sample
set (table 1), and several markers were also replicated
in a second sample set. However, the strong LD across
this region, revealed by pairwise D′ values near 1 (data
not shown) and r2 values 10.8 between some of these
SNPs (fig. 1B), made it difficult to determine whether
these associated SNPs are independent risk factors for
RA or are in LD with the known W620 risk allele. To
help resolve this issue, we conducted haplotype analy-
ses. The same 10 common haplotypes (frequency 11%)
were predicted in both data sets. Comparison of these
results with the HapMap data, which predict 6 haplo-
types from the 30 CEPH family trios, shows that the
minor-allele and haplotype frequencies are noticeably
different between the HapMap data and our control
samples. For example, haplotype 2, which contains the
W620 risk allele and has a frequency of 8%–9% in our
control populations, has a frequency of 13.3% in the
CEPH samples. Haplotype 5, the most common hap-
lotype in our sample sets, is also the most common
haplotype in the HapMap data; however, it is found on
27.5% of the CEPH chromosomes, as opposed to 35%
of the control chromosomes in sample set 1 and 29.9%
of the control chromosomes in sample set 2. These dif-
ferences may be due to the smaller sample size used to
generate the HapMap data and/or population-based dif-
ferences. Since the CEPH samples represent a relatively
narrow slice of the European gene pool, they may not
be representative of all the genetic diversity found in
white North Americans. Indeed, evidence is emerging
that the frequency of the PTPN22 W620 variant may
vary between different European populations, in which
it appears to be more frequent in northern than in south-
ern populations (Gregersen 2005; Seldin et al., in press).
Since our controls are individually matched to the cases

on the basis of grandparental country of origin, it is
unlikely that different ethnicities influenced the disease-
association results reported here.

Analysis of the haplotype data (table 3) shows that
the lone haplotype carrying the W620 risk allele (hap-
lotype 2) was significantly associated with RA in both
sample sets. Haplotype 1, identical at all other SNPs
but carrying the R620 allele, was not associated with
RA. These results suggest that the increased risk asso-
ciated with haplotype 2 is unlikely to be explained by
the alleles at the other 35 SNPs on this haplotype. Al-
though it is possible that another unknown polymor-
phism on this haplotype could explain the association
with RA, the data presented here, together with the
finding that the W620 variant of PTPN22 shows im-
paired function (Begovich et al. 2004; Bottini et al.
2004), provide evidence that W620 is a disease-predis-
posing allele on this haplotype.

We also observed that some variants in this region
are associated with RA independent of R620W. Further
analyses identified three SNPs (SNPs 27, 36, and 37)
that were consistently associated with RA independent
of R620W in both sample sets. SNP 36 and 37 are in
nearly complete LD (r2 of ∼1), and the risk alleles of
each are found on a single common haplotype (hap-
lotype 4 in table 3) present on ∼15%–18% of control
chromosomes, which suggests that they represent a sin-
gle association. Although we cannot exclude the pos-
sibility that SNP 27 is a disease-predisposing locus, its
association with RA is not independent of both R620W
and SNP 37. Furthermore, our results suggest that
R620W and SNP 37 uniquely define two major risk
haplotypes in both sample sets that may be sufficient
to explain the significant associations of PTPN22 with
RA in sample set 1 but not in sample set 2. The residual
significant association in sample set 2 after removal of
haplotypes 2 and 4 indicates that other haplotypes are
required to account for the remaining genetic hetero-
geneity observed in this sample set.

The diplotype analysis suggests that individuals who
are homozygous for the W620-positive haplotype 2
might have an increased risk for RA compared with
individuals who carry one copy of haplotype 2, except
when the other chromosome carries the risk allele at
SNP 37 (i.e., haplotype 4) (table 6). On the basis of the
data from sample set 1, we estimated the population-
attributable risk percentage (Rothman 2002) for the
H2/H2, H2/H4, H4/H4, */H2, and */H4 diplotypes to
be 1.7%, 7.8%, 2.9%, 13.3%, and 14.5% respectively,
relative to the */* diplotype (where an asterisk [*] in-
dicates haplotypes 1, 3, and 5–10). However, these re-
sults should be viewed with caution. Because the 95%
CIs for the OR estimates overlapped in our case-control
sample sets (table 6), they may not be significantly dif-
ferent. In addition, because these results were obtained



578 Am. J. Hum. Genet. 77:567–581, 2005

from a case-control study design, they should be repli-
cated in large cohort studies to accurately estimate ab-
solute risks associated with these markers and their dip-
lotypes in the general population.

SNPs 36 and 37 are also in near absolute LD with a
third SNP (SNP 15) that was not genotyped in the sec-
ond sample set, and minor alleles of all three SNPs are
carried by a single common haplotype, haplotype 4 (ta-
ble 3). Biologically, SNPs 36 and 37 may be particularly
interesting. SNP 36 lies in the 3′ UTR of the major
PTPN22 transcript and may influence transcript sta-
bility and/or balance of the two known alternatively
spliced PTPN22 transcripts (Cohen et al. 1999).

SNP 37 lies 1,496 bases downstream of PTPN22 at
the 5′ end of the round spermatid basic protein 1 gene
(RSBN1), where it encodes either a silent mutation or
a putative TFBS, depending on the transcript. RSBN1
is a somewhat unlikely RA-susceptibility candidate gene.
Although its function is unknown, its closest homologue
in Caenorhabditis elegans, dpy-21, is involved in X-
chromosome dosage compensation. This SNP also lies
in a putative TFBS for Pax-5, Pax-4, Nrf-1, and c-Myb
(TRANSFAC positional weight matrices) (Wingender et
al. 2000). The minor allele at SNP 37 is predicted to
change the binding activity for Pax-4 and Pax-5, and,
although it lies 3′ of PTPN22, it may still regulate ex-
pression of that gene. Pax-5 (B-cell–specific activator
protein) is required for commitment to the B-lymphoid
lineage. In the absence of Pax-5, pro-B cells are capable
of differentiating into T cells, macrophages, osteoclasts,
dendritic cells, granulocytes, and natural killer cells (Nutt
et al. 1999).

Although these observations are provocative, we
must keep in mind the possibility that these SNPs are
in LD with a true causal SNP(s), which could reside in
PTPN22 or in other genes in the same haplotype block.
Although the focus of this work was on variation in the
PTPN22 gene, the HapMap data indicate that this gene
is found in a region of high LD that extends ∼300 kb
and includes six other genes: the 3′ end of MAGI3 (en-
coding a membrane-associated guanylate kinase-related
protein), PHTF1 (encoding a putative homeodomain
transcription factor), RSBN1 (encoding round sper-
matid basic protein 1), FLJ22588 (encoding hypotheti-
cal protein LOC440603 of unknown function), AP4B1
(encoding adaptor-related protein complex 4, b1 sub-
unit), and the 5′ end of DCLRE1B (the DNA cross-link
repair 1B gene) (International HapMap Project, 16th
release, March 2005). However, only RSBN1 lies in the
same haplotype block predicted by the method of Ga-
briel et al. (2002). Given the strong LD between these
various SNPs, there is the definite possibility that alterna-
tive sites in these other genes may play a role in disease
susceptibility, although given what is currently known

about the function of these genes, none is as biologically
compelling as PTPN22.

In conclusion, we have found that 620W defines one
major risk haplotype that is strongly and consistently
associated with RA in our two sample sets. These ge-
netic data, along with other biological data (Begovich
et al. 2004; Bottini et al. 2004), point to W620 as a
disease-predisposing allele. Furthermore, we find that
alleles of other SNPs in this region that are on a rela-
tively common haplotype are positively associated with
RA, independent of R620W. These SNPs and the hap-
lotype on which they are found should be investigated
in greater detail in other populations with RA, as well
as in populations with other autoimmune diseases that
show association with the R620W SNP, to fully eluci-
date their role in autoimmunity. Finally, it will be of
interest to determine whether R620W and these newly
defined disease-susceptibility alleles also play a role in
the response to specific therapies.
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